基因轉殖微生物之現況與前景

國立台灣大學微生物與生化學研究所
潘子明
基因改造食品之檢驗與管理
研討會論文集

潘子明 編

民國九十年六月
二十一日
Proceedings
International Workshop on Impacts and Biosafety of Genetically Modified Agricultural Products

September 9-14, 2002
International Conference Hall
National Taiwan University Library
Taipei, Taiwan, Republic of China

Edited by
Dr. Tzu-Ming Pan, Dr. Zueng-Sang Chen,
Dr. Ching-Tsan Huang, Dr. Jui-Hung Yen

Food and Fertilizer Technology Center For the Asian and Pacific Region (FFTC/ASIPAC)

Department of Agricultural Chemistry
National Taiwan University
現代生物科技之母
微生物結合基因工程
創造千億台幣產業商機
大綱

- 基因轉殖微生物產品種類
- 基因轉殖微生物乳製品應用優點
- 基因工程改良基因工程菌
- 基因改造微生物生產胺基酸
- 基因改造微生物生產維生素
- 利用基因改造微生物生產酶
- 利用基因改造微生物生產食品添加物
GMO, GMM, GMF and LMO

- GMO: Genetically Modified Organism
- GMM: Genetically Modified Microorganism
- GMF: Genetically Modified Food
- LMO: Living Modified Organism
基因轉殖微生物產品種類

○ 發酵食品:
 - 麵包
 - 醬油
 - 啤酒
 - 乳製品

○ 微生物代謝產物:
 - 胺基酸 (L-tryptophan 及 L-threonine)
 - 有機酸
 - 維生素 (維生素 B₂ 及維生素 C)
 - 色素及香料

○ 微生物酵素
面包 (1)

○ 第一個採用基因工程改造的食品微生物為麵包酵母 (Saccharomyces cerevisiae)。
○ 其菌含有比普通麵包酵母高的
 ● 麥芽糖透性酶 (maltose permease)
 ● 麥芽糖酶 (maltase)
○ 麵包加工中產生 CO₂ 氣體的量也較高，最終製造出膨發性能良好、鬆軟可口的麵包產品。
○ 這種基因改造過的微生物菌種 (或稱為基因菌)，在麵包烘烤過程會被殺死，所以使用上是安全的，英國於 1990 年已經批准使用。
荷蘭 Gist-Brocades 公司產品
含轉殖之麥芽糖代謝酵素基因 (maltose permease 與 maltase 基因)
麵團產生 CO₂ 多 11-30%
於 1990 年 3 月獲准商業化使用
酱油 (1) — 风味

- 酱油风味的优劣与酱油在酿造过程中所生成胺基酸的量密切相关，酱油中胺基酸的生成与多种酶的活性有关。

- 目前羧肽酶 (分解 CO-NH键) 和碱性蛋白酶的基因已转移并转型成功，在新建构的基因工程菌株中
 - 碱性蛋白酶的活力可提高 5 倍
 - 羧肽酶的活力可大幅提高 13 倍。
酱油 (2)—產率

- 酱油製造中和壓榨性有關的酶
 - 多聚半乳糖醛酸酶
 - 葡聚糖酶
 - 纖維素酶
 - 果膠酶

- 上述酶之基因均已被轉殖，當用高纖維素酶活力的轉殖米麴黴生產醬油時，可使醬油的產率明顯提高。
酱油 (3) — 口味與色澤

- 酱油釀造過程中，木糖可與酱油中的胺基酸反應產生褐色物質，從而影響酱油的風味。
- 木糖的生成與製造酱油用米麴黴中木聚糖酶的含量與活力密切相關。米麴黴中的木聚糖酶基因已被成功選殖，用反義 RNA 技術抑制該酶的表現所建構的工程菌株釀造酱油，可大大地降低這種不良反應的進行，從而釀造出顏色淺、口味淡的酱油，以適應特殊食品製造的需要。
啤酒 (1) — 風味與品質

- 啤酒中 雙乙醣 的含量超過閾值 (0.02~0.10 mg/L) 時，就會產生一種令人不愉快的餿酸味，嚴重破壞啤酒的風味與品質。
- 雙乙醣是由啤酒酵母細胞產生的 α - 乙醣乳酸經非酶催化的氧化脫羧反應自發產生的。
- 去除啤酒中雙乙醣的有效措施之一就是利用 α - 乙醣乳酸脫羧酶。
- 由於酵母細胞本身沒有該酶活性，故利用基因轉殖技術將外源 α - 乙醣乳酸脫羧酶基因導入啤酒酵母細胞，並使其表現，是降低啤酒中雙乙醣含量的有效途徑。
啤酒 (2) — 縮短流程節省掉能源

- 啤酒發酵生產是採用啤酒酵母，但由於啤酒酵母中不含有\(\alpha \)-澱粉酶，需要利用麥芽產生的\(\alpha \)-澱粉酶使穀物澱粉液化成糊精。
- 採用基因工程技術，將大麥中\(\alpha \)-澱粉酶基因轉入啤酒酵母中，並使之大量表現，可以構建能夠產生\(\alpha \)-澱粉酶的啤酒酵母，這種酵母可以利用澱粉進行發酵。
 - 縮短生產流程、簡化工作流程。
 - 省掉高壓蒸煮的過程，可節省約 60% 的能源，縮短生產時間。
啤酒 (3)—實例

- 英國 Brewing Research International 公司產品
- 含轉殖之葡萄糖澱粉酶 (glucoamylase) 基因
- 於1994年2月獲英國農業及健康部核准使用
- Brewing Research International公司生産利用基因轉殖啤酒酵母生産之啤酒尚未正式銷售
基因轉殖微生物乳製品應用優點

- 提高生產菌在食品發酵過程中之穩定性
- 改善發酵食品的品質
- 縮短生產時期
提高生產菌在發酵過程中穩定性

- 工程菌對噬菌體具有抗性
- 乳糖代謝和蛋白酶合成的基因能全程穩定表現
- 提高乳糖的利用率
改善發酵食品的品質

- 提高其營養價值：以控制蛋白酶基因的表現程度可以優化發酵乳製品的組成。
- 改善產品的口味：在生產菌中導入某些天然香料的生物合成基因以及甜味蛋白或多肽基因。
縮短生產時期

- 提高生產菌的生長速度：重新設計乳糖發酵與其他細菌生長所必需的代謝途徑之間的物流控制。
- 增加乳製品的保鮮期：阻止乳酸合成途徑或強化表現殺菌素合成途徑。
<table>
<thead>
<tr>
<th>基因工程菌名稱</th>
<th>改良之處</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus</td>
<td>修飾細菌素合成</td>
<td>乳製品生產、無污染物質生產</td>
</tr>
<tr>
<td>Lactococcus</td>
<td>修飾蛋白質活性、提高乳糖利用率避免噬菌體感染修飾溶菌酶合成</td>
<td>乳品生產加速乾酪熟化提高菌種穩定性乾酪生產，預防雜菌感染</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>修飾麥芽發酵修飾豌豆脂肪氧化酶</td>
<td>啤酒生產，縮短發酵時間增強麴團流變學特性及穩定性</td>
</tr>
<tr>
<td>Saccharomyces carlsbergensis</td>
<td>修飾來自 Enterobacter aerogenes 或 Acetobacter pasteurianus 的 β-乙酸乳酸脫羧酶基因修飾來自 Aspergillus niger 的葡萄糖澱粉酶基因修飾來自 Schwanniomyces occidentalis 的澱粉酶和葡萄糖澱粉酶</td>
<td>縮短釀造週期應用於澱粉降解和低熱量啤酒的生產應用於澱粉生產酒精和低熱量啤酒生產</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>修飾來自 Bacillus subtilis、Trichoderma barzianum 或 barley 的 β-葡聚糖酶修飾來自 Trichoderma longibrachiatum，提高麥芽糖透明酶及麥芽糖酶的含量</td>
<td>應用於葡聚糖降解和啤酒過濾澄清增加釀製酒的果味香，改善麵糰的烘烤特性</td>
</tr>
</tbody>
</table>
胺基酸在食品工業中的用途

<table>
<thead>
<tr>
<th>胺基酸</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>丙胺酸 (Ala)</td>
<td>增鮮劑</td>
</tr>
<tr>
<td>天門冬胺酸 (Asp)</td>
<td>增鮮劑、增甜劑</td>
</tr>
<tr>
<td>半胱胺酸 (Cys)</td>
<td>生產麵包、抗氧化劑</td>
</tr>
<tr>
<td>麸胺酸 (Glu)</td>
<td>增鮮劑</td>
</tr>
<tr>
<td>甘胺酸 (Gly)</td>
<td>增甜劑</td>
</tr>
<tr>
<td>組胺酸 (His)</td>
<td>抗氧化劑</td>
</tr>
<tr>
<td>離胺酸 (Lys)</td>
<td>食品添加劑</td>
</tr>
<tr>
<td>苯丙胺酸 (Phe)</td>
<td>增甜劑</td>
</tr>
</tbody>
</table>
胺基酸產值

○ 1996年全世界市場約165萬噸，產值約1,5000-2,000億日圓：
 - L-glutamate 100萬噸
 - Methionine 35萬噸
 - L-lysine 25萬噸
 - L-phenylalanine 8,000噸
 - L-threonine 4,000噸
基因改造微生物生产胺基酸

- 美国 Archer Daniel Midland (ADM) 公司：L-tryptophane 及 L-threonine
 - 1993 年商品化
 - 1995 年 11 月获日本农林水产省饲料用安全性确认
 - 1996 年初开始于日本市场贩售
- 日本 1996 年基因改造微生物生产之胺基酸约三亿七千万元
 - 三井东庄化学公司：L-tryptophane 50 吨 (7,000 日圆/kg)
 - 味之素公司于法国合资公司：L-threonine 20 吨 (1,000 日圆/kg)
 - 三菱公司：L-asparagine 已研发成功，近日可量产
維生素

○ 維生素 B₂
○ 維生素 C
維生素 B₂

○ 美國 Hoffman-La Roche 公司：應用 Bacillus subtilis 生產維生素 B₂
○ 1996 年 5 月通過英國食品用安全性確認
○ 日本 Roche 公司：B. subtilis
 ● 1995 年於靜岡縣袋井工廠開始生產
 ● 1996 年 9 月 18 日通過日本農林水產省飼料用安全性確認
 ● 產量約 400-500 噸 (70-80 億日圓)
維生素C

○ 日本藤澤藥品：1996年完成構基因轉殖株 *Gluconobacter oxydans*。

○ 直接將 D-sorbitol 轉換成 2-keto-gluconic acid (維生素 C 合成之關鍵中間體)，轉換率近 70%。
利用基因改造微生物生产酶

- 产量高
- 品质均一
- 稳定性高
- 价格低廉
酶市場需求

- 1984 年：三億七千萬美元
- 1996 年：14 億美元
- 預估 2005 年：17-20 億美元
1996 年酶生產狀況

○ 500 家生產工廠，其中 12 家大廠幾乎囊括大部分產量：
 - 歐洲國家廠商佔 60%
 - 北美洲國家廠商佔 15%
 - 日本廠商佔 12-15%
 - 中國大陸快速增加 (1979, 1990 及 1998 年各生產 8,940, 85,186 及 22萬噸)

○ 1995 年 50% 工業用酶為基因改造微生物所生產。
基因改造微生物所生產工業用酶

- 丹麥Novo-Nordisk基因改造微生物生產之食品酵素：11種
- 生產菌（宿主）：
 - 細菌
 - *Bacillus subtilis, B. licheniformis, Streptomyces lividans, S. rubiginous, Klebsiella planicola*
 - 酵母菌
 - *Kluveromyces lactis*
 - 微菌
 - *Aspergillus niger, Asp. niger var. awamori, Asp. oryzae, Trichoderma reesei*
基因改造微生物所生產工業用酶

- 荷蘭 Gist-Brocades 公司：基因改造微生物生產之食品酵素：5 種

- 生產菌 (宿主)：
 - 細菌
 - *Bacillus amyloliquefaciens, B. licheniformis*
 - 徽菌
 - *Aaspergillus niger*
Raw materials

Carbohydrates:
- Ground grain/corn
- Starch
- Glucose
- Sugar

Proteins:
- Soy bean meal
- Gluten
- Corn steep liquor
- Casein

Salts:
- Phosphates
- Sulfates
- Ammonium salts

Diagram:
- Water
- Mixing of nutrient medium
- Sterilization
- Exhaust
- Cooling water
- Inoculation flask
- Seed fermenter
- Air
- Compressor
- Sterile filter
- Fermented broth for recovery of enzyme

Typical application of microbial production of enzyme process chart.
由發酵液回收酶之流程圖
凝乳酶

○ 開發動機：改善乾酪生產方法與提昇凝乳酶性能
○ 1970年代開始研發
○ 1988年第一個產品供乾酪製造業者試用
○ 目前已被核准使用者共 3 種
○ 基因表現使用宿主：
 ● A. niger
 ● K. lactis
 ● E. coli K12
酶基因的基因轉殖途徑
<table>
<thead>
<tr>
<th>酶名稱</th>
<th>基因供體</th>
<th>基因受體</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>凝乳酶</td>
<td>Calf</td>
<td>E. coli, Kluvyveromyces lactis, Aspergillus awamori</td>
<td>乳酪、乾酪生産</td>
</tr>
<tr>
<td>α-澱粉酶</td>
<td>Bacillus sp, Aspergillus niger</td>
<td>Bacillus subtilis</td>
<td>釀造、澱粉修飾</td>
</tr>
<tr>
<td>葡萄糖氧化酶</td>
<td>Aspergillus</td>
<td>Saccharomyces cerevisiae</td>
<td>葡萄糖酸生産、食品保鲜</td>
</tr>
<tr>
<td>葡萄糖異構酶</td>
<td>Arthrobacter</td>
<td>E. coil</td>
<td>果糖糖漿生産</td>
</tr>
<tr>
<td>轉型酶</td>
<td>A. niger Kluvyveromyces</td>
<td>S. cerevisiae, Pichia pastoris</td>
<td>轉型糖生産</td>
</tr>
<tr>
<td>普魯多醣酶 (芽孢多醣酶)</td>
<td>Klebsiella pneumoniae</td>
<td>S. cerevisiae</td>
<td>澱粉脫支</td>
</tr>
<tr>
<td>脂肪酶</td>
<td>Rhizopus miehei</td>
<td>Aspergillus oryzae</td>
<td>特種脂肪生産</td>
</tr>
<tr>
<td>α-半乳糖苷酶</td>
<td>Guar (瓜爾豆)</td>
<td>S. cerevisiae</td>
<td>修飾食品膠</td>
</tr>
<tr>
<td>α-半乳糖苷酶</td>
<td>Kluvymeromyces lactis</td>
<td>S. cerevisiae</td>
<td>乳清的利用、乳製品生産</td>
</tr>
<tr>
<td>α-乙酸乳酸脱羧酶</td>
<td>Bacillus brevis</td>
<td>Bacillus subtilis</td>
<td>啤酒釀造、縮短加工時間</td>
</tr>
<tr>
<td>溶菌酶</td>
<td>Chicken (雞) Cow (牛)</td>
<td>S. cerevisiae, Pichia pastoris</td>
<td>食品保存</td>
</tr>
<tr>
<td>鹼性蛋白酶</td>
<td>A. oryzae</td>
<td>Zygosaccharomymes rouxil</td>
<td>大豆製品加工</td>
</tr>
</tbody>
</table>
從小牛細胞分離凝乳酶原mRNA

测定其胺基酸序列

mRNA反轉錄為cDNA

凝乳酶原DNA的生化合成

cDNA基因轉殖進適當的表現載體

載體轉移入相應微生物

將凝乳酶原表現，分泌到肉汁培養基中

在低pH值下凝乳酶原轉化為活性凝乳酶

純化凝乳酶使之商業化

基因工程菌生產牛凝乳酶示意圖
植物甜蛋白

<table>
<thead>
<tr>
<th>蛋白</th>
<th>植物</th>
<th>甜度 (對比蔗糖)</th>
<th>特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>應樂果甜蛋白</td>
<td>Diosconophyllum cumminsii</td>
<td>1500</td>
<td>10.7 kD；兩條鍵，50+45個胺基酸殘基；熱敏感</td>
</tr>
<tr>
<td>奇異果甜蛋白</td>
<td>Thaumatococcus daniellii</td>
<td>2000</td>
<td>22 kD；207個胺基酸殘基；熱敏感</td>
</tr>
<tr>
<td>馬檳榔甜蛋白</td>
<td>Capparis masaikai</td>
<td>400</td>
<td>14 kD；兩條鍵，33+72個胺基酸殘基；熱敏感</td>
</tr>
<tr>
<td>Brazzein</td>
<td>Pentadiplandra brazzeana</td>
<td>2000</td>
<td>6 kD；52個胺基酸殘基；熱穩定</td>
</tr>
</tbody>
</table>
香料

香料傳統上是以化學合成、萃取、反應、發酵等方法生產。目前，消費者趨向於使用或購買含有天然而非人造香料的產品，從天然芳香植物中萃取的香料受到人們的青睞。

然而，天然香料的萃取成本昂貴、產率低，因此，以生物技術生產也逐漸成為香料開發的主流。

香料屬於微生物的代謝產物，生物技術生產天然香料除可以採用微生物發酵生產外，亦可以酶或微生物轉換方式生產。

利用基因工程技術配合代謝工程改良生產菌生產天然香料，具有獨特的優勢。
蛋白質藥物

- 預期由基因轉殖動物、植物來生產蛋白質藥物。
- 估計五年內，以基因重組技術所生產蛋白質藥物產量，平均年成長率約為 41%。
- 尤以基因重組微生物發酵所生產血清，取代來自天然血漿萃取的方法成長最迅速。
- 就長期趨勢觀察，在藥物安全性及大量生產考量上，以基因工程方法取代天然萃取法應是必然趨勢。
全球蛋白質藥物產量

<table>
<thead>
<tr>
<th>製造技術</th>
<th>1999年</th>
<th>2004年</th>
<th>1999-2004年平均成長率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>產量 (kg)</td>
<td>百分比 (%)</td>
<td>產量 (kg)</td>
</tr>
<tr>
<td>一般生物方法</td>
<td>1,047,617</td>
<td>99.9</td>
<td>1,146,936</td>
</tr>
<tr>
<td>生物萃取</td>
<td>637,839</td>
<td>60.9</td>
<td>709,116</td>
</tr>
<tr>
<td>微生物發酵</td>
<td>409,769</td>
<td>39.1</td>
<td>437,809</td>
</tr>
<tr>
<td>動物細胞</td>
<td>9</td>
<td>ne</td>
<td>11</td>
</tr>
<tr>
<td>基因工程方法</td>
<td>1,172</td>
<td>0.1</td>
<td>6,557</td>
</tr>
<tr>
<td>微生物發酵</td>
<td>865</td>
<td>73.8</td>
<td>5,924</td>
</tr>
<tr>
<td>動物細胞</td>
<td>307</td>
<td>26.2</td>
<td>545</td>
</tr>
<tr>
<td>轉殖動物</td>
<td>0</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>轉殖植物</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>化學合成方法</td>
<td>69</td>
<td>ne</td>
<td>80</td>
</tr>
<tr>
<td>總計</td>
<td>1,048,858</td>
<td>100.0</td>
<td>1,153,573</td>
</tr>
</tbody>
</table>

資料來源：生物技術開發中心 ITIS 計畫整理
World Health Organization
Department of Food Safety

"...... access to nutritionally adequate and SAFE food is a right of each individual."

recognized by the FAO/WHO International Conference on Nutrition (ICN), Rome, 1992

<table>
<thead>
<tr>
<th>Food Safety</th>
<th>Publications and Documents</th>
<th>Chemical Contaminants in Food</th>
<th>Foods derived from modern biotechnology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar-Food Safety Events</td>
<td>Microbiological risk assessment</td>
<td>Related links</td>
<td>Codex Alimentarius</td>
</tr>
<tr>
<td>Acrylamide NEW</td>
<td>Prabiotics</td>
<td>Food Safety News Letter</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of the Joint FAO/WHO Food Standards Programme - Final Report

- "Codex Review" page

http://www.who.int/fsf/

"20 Questions on Genetically Modified Foods" 15 October 2002

Frequently Asked Questions on Acrylamide

20 QUESTIONS ON GENETICALLY MODIFIED (GM) FOODS

These questions and answers have been prepared by WHO in response to questions and concerns by a number of WHO Member State Governments with regard to the nature and safety of genetically modified food.

Q1. What are genetically modified (GM) organisms and GM foods?

Genetically modified organisms (GMOs) can be defined as organisms in which the genetic material (DNA) has been altered in a way that does not occur naturally. The technology is often called “modern biotechnology” or “gene technology”, sometimes also “recombinant DNA technology” or “genetic engineering”. It allows selected individual genes to be transferred from one organism into another, also between non-related species.
潘子明

台北市羅斯福路四段一號
台大生命科學院微生物與生化學研究所
Tel: (02)23630231-3813
Fax: (02)23627044
E-mail: tmpan@ntu.edu.tw
Web: http://bst013.bst.ntu.edu.tw/panlab/